linear tensor - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

linear tensor - traducción al ruso

CONCEPT IN LINEAR ALGEBRA, GENERALIZED THROUGHOUT MATHEMATICS
Tensor products; ⊗; Tensor multiplication; Tensor product of vector spaces; Tensor product (vector spaces); Tensor Product; Tensor product representation; The tensor product; Tensor product of linear maps
  • commutative]] (that is, <math>h = \tilde{h} \circ \varphi</math>).

linear tensor      

общая лексика

поливектор

tensor density         
GENERALIZATION OF TENSOR FIELDS
Relative tensor; Tensor densities; Vector density

математика

тензорная плотность

relative tensor         
GENERALIZATION OF TENSOR FIELDS
Relative tensor; Tensor densities; Vector density

математика

относительный тензор

псевдотензор

Definición

linear map
<mathematics> (Or "linear transformation") A function from a vector space to a vector space which respects the additive and multiplicative structures of the two: that is, for any two vectors, u, v, in the source vector space and any scalar, k, in the field over which it is a vector space, a linear map f satisfies f(u+kv) = f(u) + kf(v). (1996-09-30)

Wikipedia

Tensor product

In mathematics, the tensor product V W {\displaystyle V\otimes W} of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V × W V W {\displaystyle V\times W\to V\otimes W} that maps a pair ( v , w ) ,   v V , w W {\displaystyle (v,w),\ v\in V,w\in W} to an element of V W {\displaystyle V\otimes W} denoted v w . {\displaystyle v\otimes w.}

An element of the form v w {\displaystyle v\otimes w} is called the tensor product of v and w. An element of V W {\displaystyle V\otimes W} is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span V W {\displaystyle V\otimes W} in the sense that every element of V W {\displaystyle V\otimes W} is a sum of elementary tensors. If bases are given for V and W, a basis of V W {\displaystyle V\otimes W} is formed by all tensor products of a basis element of V and a basis element of W.

The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V × W {\displaystyle V\times W} into another vector space Z factors uniquely through a linear map V W Z {\displaystyle V\otimes W\to Z} (see Universal property).

Tensor products are used in many application areas, including physics and engineering. For example, in general relativity, the gravitational field is described through the metric tensor, which is a vector field of tensors, one at each point of the space-time manifold, and each belonging to the tensor product with itself of the cotangent space at the point.

¿Cómo se dice linear tensor en Ruso? Traducción de &#39linear tensor&#39 al Ruso